A Selective Cell Population from Dermis Strengthens Bone Regeneration
نویسندگان
چکیده
: Finding appropriate seed cells for bone tissue engineering remains a significant challenge. Considering that skin is the largest organ, we hypothesized that human bone morphogenetic protein receptor type IB (BmprIB)+ dermal cells could have enhanced osteogenic capacity in the healing of critical-sized calvarial defects in an immunodeficient mouse model. In this study, immunohistochemical staining revealed that BmprIB was expressed throughout reticular dermal cells; the positive expression rate of BmprIB was 3.5% ± 0.4% in freshly separated dermal cells, by flow cytometry. Furthermore, in vitro osteogenic capacity of BmprIB+ cells was confirmed by osteogenic-related staining and marker gene expression compared with unsorted dermal cells. In vivo osteogenic capacity was demonstrated by implantation of human BmprIB+ cell/coral constructs in the treatment of 4-mm diameter calvarial defects in an immunodeficient mouse model compared with implantation of unsorted cell/coral constructs and coral scaffold alone. These results indicate that the selective cell population BmprIB from human dermis is a promising osteogenic progenitor cell that can be a large-quantity and high-quality cell source for bone tissue engineering and regeneration. SIGNIFICANCE Dermal cells are a promising cell population for bone regeneration; unfortunately, the osteogenic potential of unsorted cells was quite low. This study demonstrated that a specific cell population in human dermis-bone morphogenetic protein receptor IB (BmprIB)+ cells-exhibited significantly higher osteogenic potential than unsorted dermal cells by repairing critical-sized calvarial defects in an immunodeficient mouse model. This animal study is an extension of a previous in vitro finding in which BmprIB was proven as a marker for enrichment of osteogenic precursor-like cells in human dermis, indicating that the selective cell population BmprIB from human dermis is a promising osteogenic progenitor cell that can provide a large-quantity and high-quality cell source for bone tissue engineering.
منابع مشابه
Differentiation Potential and Culture Requirements of Mesenchymal Stem Cells from Ovine Bone Marrow for Tissue Regeneration Applications
Objectives- To isolate, culture-expand and differentiate mesenchymal stem cells from ovine bone marrow and determine their culture requirements for high expansion rate. Design- Experimental study. Animals- Five Shal sheep. Procedures- In this study, ovine marrow cells were plated and culture expanded through 3 successive subcultures. The resultant cells were then plated at differentiating condi...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملBone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration
Cutaneous wounds are among the most common soft tissue injuries. Wounds involving dermis suffer more from outside influence and higher risk of chronic inflammation. Therefore the appearance and function restoration has become an imperative in tissue engineering research. In this study, cell-aggregates constructed with green fluorescent protein-expressing (GFP(+)) rat bone marrow mesenchymal ste...
متن کاملHuman Skin Cells That Express Stage-Specific Embryonic Antigen 3 Associate with Dermal Tissue Regeneration
Stage-specific embryonic antigen 3 (SSEA3) is a glycosphingolipid that has previously been used to identify cells with stem cell-like, multipotent, and pluripotent characteristics. A rare subpopulation of SSEA3-expressing cells exists in the dermis of adult human skin. These SSEA3-expressing cells undergo a significant increase in cell number in response to injury, suggesting a possible role in...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کامل